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The problem of the propagation of a spherical detonation wave in water-saturated 
soil was solved in [i, 2] by using a model of a liquid porous multicomponent medium 
with bulk viscosity. Experiments show that soils which are not water saturated are 
solid porous multicomponent media having aviscosity, nonlinear bulk compression 
limit diagrams, and irreversible deformations." Taking account of these properties, 
and using the model in [2], we have solved the problem of the propagation of a 
spherical detonation wave from an underground explosion. The solution was obtained 
by compute~, using the finite difference method [3]. The basic wave parameters were 
determined at various distances from the site of the explosion. The values obtained 
are in good agreement with experiment. Models of soils as viscous media which take 
account of the dependence of deformations on the rate of loading were proposed in 
[4-7] also. In [8] a model was proposed corresponding to a liquid multicomponent 
medium with a variable viscosity. 

I. In accordance with the model in [2], we consider soil as a solid three-component 
medium containing free pore space filled with air, water, and mineral grains. We denote by 
~i, ~2, and ~z the volumes of free pore space, water, and the solid component per unit volume 
of the medium; 0=o and 03o are the densities of the liquid and the material of the solid 
component; czo and c3o are the sound speeds in these materials. All quantities correspond to 
atmospheric pressure p = po, and ~I + ~a + ~3 = i. 

The volume strain ~ of the medium includes the strain sx of the free pore space arising 
as a result of the repacking of the solid and liquid particles under compression of the me- 
dium, and the strains s= and s~ of the materials of the liquid and solid components: ~ = ~s~ 

The strain under compression is taken negative. The density of the medium at the initial 
pressure p = po is 

PO = ~lPlO-'~- ~2P20 + ~3P30, 

where P~o is the density of air. 

The equations of static volume compression of the components as p § 0 and s § 0 are ap- 
proximated by the Tait equations. 

For the free pore space 

p- po= �9 + 1) 11. 

For the remaining components 

_P~0,%ft~. I) -v~ t] ,  ~ 2; 3. 
P -- Po -- ?~ L ~ ~ + -- = 

The compressibility of the first component -- the free pore space -- is substantially 
smaller than that of the air contained in it. The values of YS and poc~ in the equation of 

compressibility' are determined by the condition of repacking of the solid and liquid particles 
during deformation. They depend on the stiffness properties of the skeleton of the soil, and 
are found from experiment for each kind of soil separately. The equation of the static 
volume compression of the medium as p § 0 and ~ + 0, in conformity with the equations of 
volume compressibility of the components, has the form 
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The equations of dynamic volume compression of the materials of the liquid and solid 
components as p § = and s § ~ are assumed the same as under static stress. They do not de- 
pend on the strain rate. The equation of dynamic volume compression of the free pore space 
is taken in the form p -- po = fs(sl) + ksl, where k < O. 

Denoting by k S the static, and by k D the dynamic bulk modulus of the free pore space, 

we obtain k = k D -- ks, and k S =--Ooc~ as p ~ po and ci + O. 

As the soil is deformed, the description of its state shifts from the dynamic toward the 
static volume compression diagram. The rate of this shift is determined by the magnitude 
of the bulk viscosity ~. 

Experiments show that under small loads the deformation of the soil is due mainly to the 
decrease of the volume of the free pore space. Under loads of the order (i00-i000) x lO s 
N/m 2 the magnitude of the strain s: of the free pore space approaches el, and further increase 
of the strain of the medium under increased loading occurs mainly as a result of the compres- 
sion of the material of the solid component and water. A similar character of the strain is 
taken into account in the model under consideration. 

Under the assumptions made, the equation of volume compression of the medium has the 
form 

f~ o@ (p, v) ~ (p,V), (i.i) 
~ = Vo = ~ (p,, V)  "p - 

where 

1+~? i 

i=2  PioCio L PioCio ~- j 

(p, v )  = di~ ('d1.'~-'- 

f~ %) = Is (eO + ks1, Is (s3 = -~s 1} 
( P -  Po) ~ v vo v ' h _ ~ _  + 1  - - t ,  e = - - -  

g 1 = - -  , V 0 
i=2  PiO iO 

It is assumed that the equation for the unloading of the materials of the liquid and 
solid components is the same as the equations for their compression. The equation of static 
unloading of the free pore space under maximum strains lell > ISlml agrees with the equation 
of compression; for smaller values of the maximum strain thei:unloading line is assumed parallel 
to the tangent to the compression curve at the point el = elm. 

Under these assumptions the equation for the volumetric unloading of the medium has the 

form (i.i), where 

1+~ i 
3 

' ~  al  [ ? i ( P - - P o )  + i ]  vi 
g) (p,  V)  = % , k - -  pocg f f  l - -  _, p;.c~ "~ - -  ~ J " 

~=2 io io L Pio io 

(p~ v)  = k (k - poCk) ,,~ ~ (p,, v)  :-  p - po A %),, 

/ R  (g l )  : PoC~ 81"-- [ ~S (Prn -- PO) .~ t ?S Pm -- PO 
k p~4 004 + t ,  

1 

poC~= PoC2S(glm+ ~'-Vs'l t + 81m~-[ " ~ S ( p m ' p ~  ~ --'~PoCS + ~]--'--S 
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Experiments show that the coefficient of lateral pressure k T = o@/o r in soil that is not 

water saturated increases with increasing pressure and approaches one as p § ~. For small 

loads the Mises-Schleicher plasticity condition is satisfied in the soil, and for larger loads 
the soil becomes similar to a liquid medium. Accordingly, the plasticity condition is taken 
in the form [9] 

k * ( p _ p o )  
s ,  = - bo + (--7-=7_ po)/  = + (p - -  Po). ( 1 . 2 )  

* p* - - %7 

Hence as p § po, p = p*, and p + ~, we obtain values of k T equal to (2 -- k*)/(l + k*)2, 

(2 + k*)/(l + 2k*)2, and 1 respectively. As p § p0~ P = p*, and p § ~, k T = 0.38, 0.56, and 

1 respectively. Here it is assumed that b0 = 0 and p* -- po = 2 x l0 s x l0 s N/m 2. 

The scheme of instantaneous wave detonation of the explosive charge was used in the solu- 
tion. A two-term isentropic equation of state of the detonation products was assumed in the 
form [5, i0] 

p ~- A9 v~ + B9 vb. ( 1 . 3 )  

For trotyl Pn = 1600 kg/m 3, Q = i000 kcal/kg, y~ = 3.12, Yb = 1.25, A = 0.88 (N/m2)/ 

(kg/mS) Y~, and B = 0.62 x 105 (N/m2)/(kg/mS)Yb. 

For spherical symmetry the equations of motion in Eulerian variables have the form 

P ~,-~ + u "~-7. ar  r = 0,,,~ 

! 
a~o_7 + r2~ a (r2pU)Or -- 0,~ P - -  Po = - -  --g- (c~ + 2~o). 

(1.4) 

Equations (i.i), (1.2), and (1.4) form a closed system. The closed system of equations 
of motion of the detonation products includes (1.3) and (1.4). 

The initial conditions of theproblem are: u = 0, p = po, P = P for 0 ~r~-~ ro; u = 0, 
n 

P = Po = i/Vo, p = po for ro < r. 

On the boundary of the underground explosion cavity the stress o and the velocity u 
are continuous, r 

The Lagrangian scheme used in the calculations with an artificial viscosity [3] enables 
one to take account of relations at the jump implicitly, without the removal of the singularity 
of the motion, if it ceases to be continuous. This leads to an artificial smearing out of 
the wave. A more accurate calculation enables one to narrow down the smeared-out region. 

The values used for the soil characteristics correspond approximately to loess, in which 
the wave parameters have been measured for underground explosions of concentrated explosive 
charges under field conditions [ii]. It was assumed that al = 0.4, a2 = 0.2, ~3 = 0.4, 

poc~ = 30 x l0 s N/m 2, k = 150 • 105 N/m 2, YS = 6, 02o = i000 kg/m 3, c2o = 1500 m/sec, pso = 

2650 m/sec, C3o = 5000 m/sec, Y2 = 7, y~ = 5, and Czm = -0.15. The radius of the charge ro = 
0.i m. 

There are no experimental data on the bulk viscosity of the soil under consideration. 
Experiments in [12] show that the maximum and minimum possible values in clay and loamy soils 
are approximately i00 and 5000 N'sec/m 2. Calculations were performed for n = i00, I000, and 
5000 N.sec/m 2. The effect of the irreversibility of the deformations on the wave parameters 
was estimated by taking account of the differences between the compression and unloading limit 
diagrams of the medium, and without taking account of these differences, when the compression 
and unloading diagrams coincide for all pressures. 

2. Let us consider the results of the calculation. Figure 1 shows the maximum radial 
stress o as a function of the dimensionless distance R ~ = r/ro for wave propagation in 

r 
various media. Lines 1 and 2 refer to the soil under consideration for ~ = 5000 and i00 
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N'sec/m 2 respectively and for coincidence of the loading and unloading diagrams; 3 and 4 are 
for the soil under consideration, taking account of the differences in loading and unloading 
for ~ = 5000 and i000 N'sec/m2; 5 and 6, taken from [4], correspond to water-saturated soil 
with different air contents for ~i = 0.04, ~3 = 0.6 and ~I = 0.01, ~3 = 0.6; 7 is for water. 
The calculations in this work were also performed for the scheme of instant detonation of the 
explosive charge. For water and water-saturated soil the graphs correspond to the pressure. 

A comparison shows that the stress in the soil under consideration, which is not water 
saturated, decreases with distance much more rapidly than in water-saturated soils which are 
less compressible, and in water. This agrees with the experimental data. Increasing B and 
taking account of the irreversibility of the deformations lead to stronger damping of the 
maximum stresses. An increase in ~ by a factor of 50 changes the value of o by 30-40% for 

r 
stresses of the order of i0 x 105 N/m 2, and taking account of the irreversibility of the de- 
formations changes it by 20-30%. 

Curves i and 2 Of Fig. 2 show the experimental dependence of the maximum radial (o r ) and 

tangential (00 ) stresses on the distance R ~ in loessial soil [ii]. The masses of the concen- 
trated explosive charges in the experiments were 0.2, 1.6, and 25 kg. In the last case ro = 
0.154 m. Curves 3 and 4 correspond to calculations performed for Or and ~ with n = i000 N" 

sec/m 2 and 5 and 6 are for calculations of a and o e with n = 5000 N'sec/m 2 Curves 3 and 5 
' r " 

coincide with curves 4 and i of Fig. 1. The calculated stress components are close to the 
experimental values. The best agreement is achieved for ~ = i000 N'sec/m =, when the differences 
between the compression and unloading diagrams are taken into account. Apparently still better 
agreement between the calculated and experimental values can be obtained by taking ~ = 2000- 
2500 N'sec/m 2. 

Figure 3 shows the dependence of the maximum particle speed u on distance in the soil 
under consideration, in water-saturated soils, and in water, The notation is the same as in 
Fig. i. The particle speed and the stress in soil that is not water saturated are smaller 
than in water-saturated soil and in water. The relative difference of the values of the 
Speed, however, is smaller than that of the stress. Increasing the viscosity and taking 
account of the irreversibility of the deformations lead to a decrease of the particle speed. 
Curve 8 in Fig. 3 corresponds to the maximum values of the particle speed in experiments in 
loessial soil. The calculated values of the maximum particle speed and the maximum stresses 

are close to the experimental values. 

Figure 4 shows the time dependence of the stress o during the passage of a wave at 
r 

various distances from the site of the explosion for ~ = 5000 N'sec/m 2. Curves 1-3 corre- 
spond to distances R ~ = 5.07, 7.07, and 10.27 respectively. The differences between the com- 
pression and unloading diagrams were taken into account in the calculation. Curves 4-6 refer 
to R ~ = 5.47, 9.07, and 12.7 respectively when the compression and unloading diagrams were 

identical. 

It follows from Fig. 4 that the detonation wave is smeared out as it propagates, and is 
transformed from a shock to a continuous compression wave. The time for the stress to rise 
to a maximum increases with distance in approximately the same way as in experiments [ii]. 
A comparison of the curves shows that the wave profile is weakly dependent on taking account 

of the differences between the compression and unloading diagrams. 

The wave may be smeared out by an artificial viscosity. An estimate performed by the 
method in [13] shows that the thickness of the smeared out region calculated with ~ = (lO0- r 
120) x 105 N/m 2 is greater than that produced by an artificial viscosity; i.e., it is related 
to the propertiesof the medium. Small oscillations of o (t) during the decrease of the 

r 
stress do not follow from the model of the medium. This is a result of the method of calcula- 
tion used on the computer. No additional smoothing of the curves was performed. 

Figure 5 shows the change of state in particles of the medium during the passage of a 
wave. Curves i and 2 correspond to limit diagrams of dynamic and static compression of the 
medium; 3 and 4 show p as a function of V at distances R ~ = 5.47 and 9.07 for n = I00 N'sec/m2; 
5 and 6 are for the same distances, but for n = 5000 N.sec/m 2. In both cases the compression 
and unloading diagrams were assumed identical. Curves 7-9 correspond respectively to distances 
5.07, 7.07 and 10.27 for n = 5000 N'sec/m 2, taking account of the differences between the 

dynamic and static compression diagrams. 
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At the distances considered the wave is already smeared out, the pressure is increasing 
without a jump, and therefore the parts of the p(V) curves corresponding to an increase in 
pressure lie between the limit compression diagrams. For smaller values of q they are con- 
siderably closer to the static diagram. During part of the unloading of the medium these 
curves intersect the static diagram. At small distances the minimum volume is reached at the 
maximum pressure, and at larger distances while the pressure is decreasing. Experiments in 
which simultaneous measurements of stresses and strains were performed during the passage of 
a detonation wave [2] show that this is characteristic of soils. 

The energy losses to particles of the medium during the passage of a wave are determined 
by the area of the figure in the (p, V) plane bounded by the p(V) curve corresponding to the 
compression and unloading of these particles. A comparison of the curves in Fig. 5 shows that 
an increase in q leads to an increase in the area of this figure, i.e., to an increase in 
energy losses. The increase in energy losses is also related to the more rapid damping of the 
wave with distance for a larger value of n. 

Figure 6 shows the time dependence of the dimensionless radius of the underground explo- 
sion cavity (gas chamber) R = r /ro. Here r n is the dimensional radius of the cavity. Curves 

n n 
1 and 2 correspond to ~ = 5000 and i000 N'sec/cm 2. Calculations show that the Rn(t) curves 
practically coincide whether or not the differences in the compression and unloading diagrams 
are taken into account. 
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The final dimensions of the cavities in underground explosions were measured in loessial 
soils. The average dimensionless radius of a cavity R was 6.0. The curves in Fig. 6 show 

n 
that the calculated value of the final radius of the cavity is nearly the same. The primary 
expansion of the gas cavity lasts about (6-8) • 10 -3 sec. This time corresponds to the de- 
crease of the maximum stress o in the wave to (2-4) • l0 s N/m 2. 

r 
Table 1 shows the average speeds D of propagation of the maximum stresses o over a 

r 
succession of distance intervals R ~ from the site of the explosion. The calculated values 
of the speed were obtained for two bulk viscosities, taking account of the difference of the 
compression and unloading diagrams; the experimental values are for explosions in loessial 
soils. 

Thus, the problem of the propagation of a spherical detonation wave produced in an under- 
ground explosion has been solved by using a model of a solid multicomponent medium and taking 
account of the plastic properties and bulk viscosity for nonlinear limit compression diagrams. 
The following basic wave parameters were determined; the maximum stress, the particle speed, 
the speed of propagation of the maximum stress, the wave profiles at various distances from 
thesite of the explosion, and the radius of the underground cavity. A comparison with results 
of experiments performed in soils shows good agreement of the values of all the basic wave 
parameters. The model used [2] takes account of the basic properties of soils which determine 
the laws of wave processes. 
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NATURAL WAVENUMBERS OF ACOUSTIC AND ELECTROMAGNETIC 

OSCILLATIONS IN THE VICINITY OF A CIRCULAR CASCADE 

WITH A CORE 

V. L. Okulov UDC 534.242-538.565 

For eigenvalue problems in diffraction theory the square of the wavenumber is usually 
adopted as the characteristic ("natural") parameter [I]. Rigorous and approximate methods 
are fairly well known for determining the natural wavenumbers (natural frequencies) of inner 
problems, but only the long-wave or short-wave approximations are considered for the most 
part in outer problems. The author is aware of only a few papers in which the eigenvalue 
problem has been solved in a rigorous setting (see, e.g., [2, 3] and the bibliographies there- 
in). In the present article we determine the natural wavenumbers of the outer problem of 
the diffraction of electromagnetic or acoustic waves by a plane circular cascade with a core 
(hub) in a rigorous setting, i.e., for arbitrary ratios of the cascade period to the wavelength. 

Circular cascades are customarily used to model the impellers or rotors of centrifugal 
compressors and fans. The solution of the eigenvalue problem should be useful in analyzing the 
acoustic resonance effect occurring in certain operating regimes of these machines [2]. Struc- 
tures analogous to circular cascades can be regarded as models of electrodynamic resonators, 
certain antennas, and waveguide devices. To predict their resonance properties it is also 
necessary to know the natural wave numbers of electromagnetic oscillations in the vicinity of 
similar open structures [i]. 

i. We consider a stationary plane circular blade cascade of diameter 2R formed by N 
thin radial blades (reflectors) attached to a circular core of radius r (Fig. i). Let the 
function @(p, 8) describe the wave amplitude of steady-state acoustic or electromagnetic os- 
cillations in the exterior of the cascade (p, 8 are polar coordinates with origin at the 
center of the cascade). The amplitude of the total field can be written in the form 

7V--i 

9= ~ q h ,  
'l=O 

where each component ~l of the total field satisfies: 

the homogeneous Helmholtz equation 

(A + k'-)~ = O, 
where k is an arbitrary complex number; 

the homogeneous Dirichlet (~ = 0) or Neumann (~ = i) conditions 

~l  =0 or O~jOn =0 

on t h e  b l a d e s  f o r m i n g  t h e  c a s c a d e  and on t h e  s u r f a c e  o f  the .  c o r e ;  

t h e  g e n e r a l i z e d  r a d i a t i o n ,  c o n d i t i o n  [3] 
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